quinta-feira, 23 de janeiro de 2020


FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


radiação eletromagnética é uma oscilação em fase dos campos elétricos e magnéticos, que, autossustentando-se, encontram-se desacoplados das cargas elétricas que lhe deram origem. As oscilações dos campos magnéticos e elétricos são perpendiculares entre si e podem ser entendidas como a propagação de uma onda transversal, cujas oscilações são perpendiculares à direção do movimento da onda (como as ondas da superfície de uma lâmina de água), que pode se deslocar através do vácuo. Dentro do ponto de vista da Mecânica Quântica, podem ser entendidas, ainda, como o deslocamento de pequenas partículas, os fótons.
O espectro visível, ou simplesmente luz visível, é apenas uma pequena parte de todo o espectro da radiação eletromagnética possível, que vai desde as ondas de rádio aos raios gama. A existência de ondas eletromagnéticas foi prevista por James Clerk Maxwell e confirmada experimentalmente por Heinrich Hertz. A radiação eletromagnética encontra aplicações como a radiotransmissão, seu emprego no aquecimento de alimentos (fornos de micro-ondas), em lasers para corte de materiais ou mesmo na simples lâmpada incandescente.
A radiação eletromagnética pode ser classificada de acordo com a frequência da onda, em ordem crescente, nas seguintes faixas: ondas de rádiomicro-ondasradiação terahertzradiação infravermelhaluz visívelradiação ultravioletaraios X e radiação gama.

    Ondas eletromagnéticas[editar | editar código-fonte]

    Representação esquemática de uma onda eletromagnética linearmente polarizada produzida por um dipolo elétrico oscilante (à esquerda). A onda se propaga ao longo do eixo horizontal com comprimento de onda λ (ao centro). O campo elétrico, o campo magnético e o vetor de onda são representados, respectivamente, em azul, vermelho e preto (à direita).
    As ondas eletromagnéticas primeiramente foram previstas teoricamente por James Clerk Maxwell e depois confirmadas experimentalmente por Heinrich Hertz. Maxwell notou as ondas a partir de equações de electricidade e magnetismo, revelando sua natureza e sua simetria. Faraday mostrou que um campo magnético variável no tempo gera um campo eléctrico. Maxwell mostrou que um campo eléctrico variável com o tempo gera um campo magnético, com isso há uma autossustentação entre os campos eléctrico e magnético. Em seu trabalho de 1862, Maxwell escreveu:
    "A velocidade das ondas transversais em nosso meio hipotético, calculada a partir dos experimentos electromagnéticos dos Srs. Kohrausch e Weber, concorda tão exactamente com a velocidade da luz, calculada pelos experimentos óticos do Sr. Fizeau, que é difícil evitar a inferência de que a luz consiste nas ondulações transversais do mesmo meio que é a causa dos fenômenos eléctricos e magnéticos."[carece de fontes]

    Ondas harmônicas[editar | editar código-fonte]

    Uma onda harmônica é uma onda com a forma de uma função senoidal, como na figura , no caso de uma onda que se desloca no sentido positivo do eixo dos .
    A distância  entre dois pontos consecutivos onde o campo e a sua derivada têm o mesmo valor, é designada por [comprimento de onda] (por exemplo, a distância entre dois máximos ou mínimos consecutivos). O valor máximo do módulo do campo, , é a sua {amplitude}.
    Onda Harmônica
    O tempo que a onda demora a percorrer um comprimento de onda designa-se por {período}, .
    O inverso do período é a frequência , que indica o número de comprimentos de onda que passam por um ponto, por unidade de tempo. No sistema SI a unidade da frequência é o hertz, representado pelo símbolo Hz, equivalente a .
    No caso de uma onda eletromagnética no vácuo, a velocidade de propagação é  que deverá verificar a relação:
    x

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    A equação da função representada na figura acima é:
    x

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    onde a constante  é a fase inicial. Essa função representa a forma da onda num instante inicial, que podemos admitir .
    Para obter a função de onda num instante diferente, teremos que substituir  por , já que a onda se propaga no sentido positivo do eixo dos , com velocidade .
    x

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    usando a relação entre a velocidade e o período, podemos escrever:
    x

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Se substituirmos , obteremos a equação que descreve o campo elétrico na origem, em função do tempo:
    x

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    assim, o campo na origem é uma função sinusoidal com período  e amplitude . O campo em outros pontos tem exatamente a mesma forma sinusoidal, mas com diferentes valores da fase.[1]

    Propriedades[editar | editar código-fonte]

    Os campos eléctrico e magnético obedecem aos princípios da superposição de ondas, de modo que seus vectores se cruzam e criam os fenômenos da refracção e da difração.[carece de fontes] Uma onda eletromagnética pode interagir com a matéria e, em particular, perturbar átomos e moléculas que as absorvem, podendo os mesmos emitir ondas em outra parte do espectro.
    Como qualquer fenômeno ondulatório, as ondas eletromagnéticas podem interferir entre si. Sendo a luz uma oscilação, ela não é afetada pela estática eléctrica ou por campos magnéticos de uma outra onda eletromagnética no vácuo. Em um meio não linear, como um cristal, por exemplo, interferências podem acontecer e causar o efeito Faraday, em que a onda pode ser dividida em duas partes com velocidades diferentes.[carece de fontes]
    Na refracção, uma onda, transitando de um meio para outro de densidade diferente, tem alteradas sua velocidade e sua direcção (caso esta não seja perpendicular à superfície) ao entrar no novo meio. A relação entre os índices de refracção dos dois meios determina a escala de refração medida pela lei de Snell:
    x

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Nesta equação, i é o ângulo de incidência, N1 é o índice de refração do meio 1, r é o ângulo de refração, e N2 é o índice de refração do meio 2.
    A luz se dispersa em um espectro visível porque é reflectida por um prisma, devido ao fenômeno da refração. As características das ondas eletromagnéticas demonstram as propriedades de partículas e da onda ao mesmo tempo, e se destacam mais quando a onda é mais prolongada.

    Modelo de onda eletromagnética[editar | editar código-fonte]

    Um importante aspecto da natureza da luz é a frequência uma onda, sua taxa de oscilação. É medida em hertz, a unidade SIU de frequência, na qual um hertz (1,00 Hz) é igual a uma oscilação por segundo. A luz normalmente tem um espectro de frequências que, somadas, juntos formam a onda resultante. Diferentes frequências formam diferentes ângulos de refração. Uma onda consiste nos sucessivos baixos e altos, e a distância entre dois pontos altos ou baixos é chamado de comprimento de onda. Ondas eletromagnéticas variam de acordo com o tamanho, de ondas de tamanhos de prédios a ondas gama pequenas menores que um núcleo atômico. A frequência é inversamente proporcional ao comprimento da onda, de acordo com a equação:
    .
    x

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Nesta equação, v é a velocidade, λ (lambda) é o comprimento de onda, e f é a frequência da onda.
    Na passagem de um meio material para outro, a velocidade da onda muda, mas a frequência permanece constante. A interferência acontece quando duas ou mais ondas resultam em um novo padrão de onda. Se os campos tiverem as componentes nas mesmas direções, uma onda "coopera" com a outra (interferência construtiva); entretanto, se estiverem em posições opostas, pode haver uma interferência destrutiva.

    Modelo de partículas[editar | editar código-fonte]

    Um feixe luminoso é composto por pacotes discretos de energia, caracterizados por consistirem em partículas denominadas fotões (pt) ou fótons (pt-BR). A frequência da onda é proporcional à magnitude da energia da partícula. Como os fótons são emitidos e absorvidos por partículas, eles actuam como transportadores de energia. A energia de um fóton é calculada pela equação de Planck-Einstein:
    .
    x

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Nesta equação, E é a energia, h é a constante de Planck, e f é a frequência.
    Se um fóton for absorvido por um átomo, ele excita um electrão (pt) ou elétron (pt-BR), elevando-o a um alto nível de energia. Se o nível de energia é suficiente, ele pula para outro nível maior de energia, podendo escapar da atração do núcleo e ser liberado em um processo conhecido como fotoionização. Um elétron que descer ao nível de energia menor emite um fóton de luz igual a diferença de energia. Como os níveis de energia em um átomo são discretos, cada elemento tem suas próprias características de emissão e absorção.[carece de fontes]

    Espectro eletromagnético[editar | editar código-fonte]

    Espectro eletromagnético com o espectro de luz visível indicado
    O espectro eletromagnético é classificado normalmente pelo comprimento da onda, como as ondas de rádio, as micro-ondas, a radiação infravermelha, a luz visível, os raios ultravioleta, os raios X, até a radiação gama.
    O comportamento da onda eletromagnética depende do seu comprimento de onda. Ondas com frequências altas possuem comprimento de onda curto e, por outro lado, ondas com frequências baixas possuem comprimento de onda longo . Quando uma onda interage com uma única partícula ou molécula, seu comportamento depende da quantidade de fótons por ela carregada.[carece de fontes] Através da técnica denominada Espectroscopia óptica, é possível obter-se informações sobre uma faixa visível mais larga do que a visão normal. Um espectroscópio comum pode detectar comprimentos de onda de 2 nm a 2500 nm.
    Essas informações detalhadas podem informar propriedades físicas dos objetos, gases e até mesmo estrelas. Por exemplo, um átomo de hidrogênio emite ondas em comprimentos de 21,12 cm. A luz propriamente dita corresponde à faixa que é detectada pelo olho humano, entre 400 nm a 700 nm (um nanômetro vale 1,0×10−9 metro). As ondas de rádio são formadas de uma combinação de amplitude, frequência e fase da onda com a banda da frequência.

    Interação da radiação com a matéria[editar | editar código-fonte]

    Efeitos biológicos[editar | editar código-fonte]

    O efeito biológico mais óbvio das ondas eletromagnéticas se dá em nossos olhos: a luz visível impressiona as células do fundo da retina, causando a sensação visual. Porém, existem outros efeitos mais sutis.
    Sabe-se que, em determinadas frequências, as ondas eletromagnéticas podem interagir com moléculas presentes em organismos vivos, por ressonância, isto é, as moléculas cujas frequências fundamentais sejam iguais à da onda em questão "captam" essa oscilação, como uma antena de TV. O efeito sobre a molécula depende da intensidade (amplitude) da onda, podendo ir do simples aquecimento à modificação da estrutura molecular.[carece de fontes] O exemplo mais fácil de ser observado no dia a dia é o de um forno de micro-ondas: as micro-ondas do aparelho, capazes de aquecer a água presente nos alimentos, têm exatamente o mesmo efeito sobre um tecido vivo. Os efeitos da exposição de um animal a uma fonte potente de micro-ondas podem ser catastróficos. Por isso se exige o isolamento físico de equipamentos de telecomunicações que trabalham na faixa de micro-ondas, como as estações rádio-base de telefonia celular.
    Assim como as micro-ondas afetam a água, ondas em outra frequência de ressonância podem afetar uma infinidade de outras moléculas. Já foi sugerido que a proximidade a linhas de transmissão teria relações com casos de câncer em crianças, por via de supostas alterações no DNA, provocadas pela prolongada exposição ao campo eletromagnético gerado pelos condutores. Também já se especulou que o uso excessivo do telefone celular teria relação com casos de câncer no cérebro, pelo mesmo motivo. Até hoje, nada disso foi provado.[carece de fontes]
    Também já foram feitas experiências para analisar o efeito de campos magnéticos sobre o crescimento de plantas, sem nenhum resultado conclusivo.




    ponto de Draper é a temperatura aproximada acima da qual quase todos os materiais sólidos brilham visivelmente como resultado da radiação de corpo negro.[1][2][3] Foi estabelecido em 525° C (798 K) por John William Draper em 1847.[4]
    Corpos a temperaturas logo abaixo do ponto Draper irradiam principalmente na faixa infravermelha e emitem luz visível insignificante. O valor do ponto de Draper pode ser calculado usando a lei de deslocamento de Wien: a freqüência  (em hertz) emitida por um corpo negro se relaciona com a temperatura da seguinte forma[5]
    x

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    onde
    k é Constante de Boltzmann,
    h é Constante de Planck,
    T é temperatura (em kelvins).
    Substituir o ponto de Draper nesta equação produz uma freqüência de 83 THz, ou um comprimento de onda de 3,6 µm, que é bem dentro do infravermelho e completamente invisível ao olho humano. No entanto, a borda principal da curva de radiação do corpo negro se estende, em uma pequena fração do pico da intensidade, para o infravermelho próximo e vermelho-escuro (aproximadamente o intervalo 0,7-1 m), que são muito fracamente visíveis como um vermelho opaco.
    De acordo com a lei de Stefan-Boltzmann, um corpo negro no ponto Draper emite 23 quilowatts de radiação por metro quadrado, quase exclusivamente infravermelho.







    Energia do fóton para a luz visível[editar | editar código-fonte]

    Os fótons foram descobertos por Max Planck (1858-1947) em 1900, ele propôs que a energia podia ser liberada ou absorvida pelos átomos através de “pacotes” de energia (Planck nomeou esses “pacotes” de quantum, que significa quantidade fixa), sendo assim todo átomo absorve ou emite quantidades múltiplas de um valor fixo. Esse valor é conhecido como Constante de Planck (h), onde a sua unidade é joule segundos.[5] Em 1905, Albert Einstein (1879-1955), através da teoria de Planck pode explicar o efeito fotoelétrico.[5] Einstein deduziu que cada fóton deveria ter proporcional a frequência da luz certa quantidade de energia, sendo assim,
    x

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Sendo :
     a Constante de Planck;
     a frequência;
     a energia do fóton.
    Sendo assim, para calcularmos a energia dos fótons do espectro visível, é só multiplicar a frequência (na faixa de 400 Thz a 750 Thz) pela Constante de Planck



    lei de Wien (ou lei do deslocamento de Wien) é a lei da física que relaciona o comprimento de onda onde se situa a máxima emissão de radiação eletromagnética de corpo negro e sua temperatura:[1]
    x

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    onde
     é o comprimento de onda (em metros) onde a intensidade da radiação eletromagnética é a máxima;
     é a temperatura do corpo em kelvin (K), e
     é a constante de proporcionalidade, chamada constante de dispersão de Wien, em m.K (metro x Kelvin).
    O valor dessa constante é  m.K
    O que resulta em:
    Conforme a lei de Wien, quanto maior for a temperatura de um corpo negro, menor será o comprimento de onda para o qual a emissão é máxima. Por exemplo, a temperatura da fotosfera solar é de 5780 K e o pico de emissão se produz a 475 nm =. Como 1 angstrom 1 Å= 10−10 m=10−4 micras resulta que o máximo ocorre a 4750 Å.




    Em mecânica o termo relação de dispersão refere-se à relação - normalmente uma função - que estabelece a energia que um dado ente físico possui em função do momento que este transporta. Em partículas livres no domínio da física clássica - com massas de repouso não nulas e velocidades muito inferiores à da luz - a relação de dispersão é uma função quadrática do momento: . Esta relação aparece de forma explícita no hamiltoniano para o sistema em questão e conduz à expressão para a energia cinética:  
    x

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    ao considerar-se que .
    A relação acima vale no contexto da física clássica e para partículas completamente livres. Em situações mais específicas, como aquelas encontradas em física do estado sólido, a exemplo no estudo de elétrons confinados na estrutura dos cristais semicondutores, a relação de dispersão para as partículas - no caso os elétrons - pode mostrar-se dependente inclusive da direção de propagação das mesmos dentro do sistema. No caso do estudo dos cristais o momento para os elétrons dentro dos mesmos é definido de forma adequada à situação, sendo então denominado momento cristalino do elétron.
    No âmbito da relatividade ou da mecânica quântica as expressões que definem o momento das partículas em estudo podem assumir formas também bem distintas da expressão clássica , o mesmo ocorrendo para as expressões da energia, mas em qualquer caso a relação entre o momento e a energia - ou seja, a relação de dispersão - mostra-se igualmente importante, sendo geralmente o cerne de qualquer teoria que busque estabelecer a dinâmica de matéria, energia e momento nos sistemas físicos sob seu domínio.
    Em qualquer teoria dinâmica a relação de dispersão mostra-se fundamental, e a partir da mesma é que se define outras grandezas geralmente importantes ao estudo, como a massa.